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Abstract

Dynamics of ideal fluid with free surface can be effectively solved by
perturbing the Hamiltonian in weak nonlinearity limit. However it is
shown that perturbation theory, which includes third and fourth order
terms in the Hamiltonian, results in the ill-posed equations because of
short wave instability. To fix that problem we introduce the canonical
Hamiltonian transform from original physical variables to new variables
for which instability is absent. We found the choice of such transform is
unique.

1 Introduction

The Euler equations describing dynamics of ideal fluid with free surface is a
Hamiltonian system, which is especially simple if the fluid motion is potential,
v = V&, where v is the fluid’s velocity and ¥ is the velocity potential. In this
case [1, 2] the Euler equations can be presented in the form:

o_sm 0w __on o
ot 8T B8t on

Here z = n(r) is the shape of surface, 2 is vertical coordinate and r = (z,y) are
horizontal coordinates, ¥ = ‘I>|z=n is the velocity potential on the surface. The
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Hamiltonian H coincides with the total (potential and kinetic) energy of fluid.
The Hamiltonian cannot be expressed in a closed form as a function of surface
variables n, ¥, but it can be presented by the infinite series in powers of surface
steepness |Vy)|:

H=H0+H1+H2+.... (2)

Here Hy, H,, H, are quadratic, cubic and quartic terms, respectively. Equa-
tions (1), (2) are widely used used now for numerical simulation of the fluid
dynamics [7, 8, 9, 10, 12, 13, 14, 15]. These simulations are performing by the
use of the spectral code, at the moment a typical grid is 512 x 512 harmonics.
Canonical variables are used also for analytical study of the surface dynamics
in the limit of small steepness. It was show [4, 5, 6] that the simplest truncation
of the series (2), namely
H= HO + H 1, (3)

leads to completely integrable model - complex Hopf equation. In framework of
this approach one can develop the self-consistent theory of singularity formation
in absence of gravity and capillarity for two dimensions (one vertical coordinate

2 and one horizontal coordinate z).
However, canonical variables 5, ¥ has a weak point, which becomes clear, if
we concentrate our attention on the complex Hopf equation,

00 1,00\2
5 = 3(5) @
which comes from Eqs. (1), (3). Here
¥ = Re(O) (5)

and © is analytic function of complex variable z in a strip —h < Im(z) < 0.
The weak point is that Eq. (4) is ill-posed. A general complex solution of this
equation is unstable with respect to grow of small short-wave perturbations. The
same statement is correct with respect to more exact fourth order Hamiltonian

H = Hy+ H; + H,, (6)

which is used in most numerical experiments. These experiments are easy be-
comes unstable: to arrest instability one should include into equations strong
artificial damping at high wave numbers. Even in presence of such damping
one can simulate only waves of a relatively small steepness (not more that
0.15)[reference??777?7777].

In this Article we show that these difficulties can be fixed by a proper canon-
ical transformation to another canonical variables. It is remarkable, but the
property of nonlinear wave equation to be well- or ill-posed is not invariant with
respect to choice of the variables.

In the present Article we demonstrate that there are unigue canonical vari-
ables such that the Eqs. (1), (6) are well-posed. We call these variables “optimal
canonical variables”. We can formulate a conjecture that the optimal canonical
variables exist and are unique in all orders of nonlinearity.




2 Basic equations and Hamiltonian formalizm

Consider the dynamics incompressible ideal fluid with free surface and constant
depth. Fluid occupies the region

~h<z<n(r), r=(zy), (M

where (z,y) are the horizontal coordinates and z is vertical coordinate.
Viscosity is assumed to be absent and the fluid’s velocity v is potential one:

v=V§, 8)
where @ is the velocity potential. Incompressibility condition,
V-v=0, 9)
results in the Laplace Eq.
AP =0. (10)
The potential ® satisfies also the Bernoulli equation:

&, + %(V§)2+p+gz=0, (11)

where p is the pressure, g is the acceleration of gravity, and we set density of
fluid to unity.

There are two types of boundary conditions at free surface for Egs. (10), (11).
First is the kinematic boundary condition

% = (q», ~ V- vq»)l = vo/1+ (V)2 12)

z=n

where v, = n- V® is the normal component of fluid’s velocity at free surface,

and n = (-Vn,1)[1 + (Vn)z]_”2 is the interface normal vector.
Second is the dynamic boundary condition at free surface

pl =gV - __.VL__, ‘
==n V14 (Vn)?

where o is the surface tension coefficient which determines the jump of pressure
at free surface from zero value out of the fluid to p|z=nva.lue according to Eq.

(13).
Boundary condition at the bottom is

(13)

q’zlz:—h- (14)

Egs. (10) — (14) form a closed set of equations to determine the dynamics
of free surface.




The total energy, H, of the fluid consists of kinetic energy, T, and potential
energy, U:

H=T+U, (15)
T = % / dr /_ 7; (V®)’dz, (16)
U=%g/n2dr+a/[ 1+(V77)2—1]dr. 7)

It is a convenient to introduce the value of velocity potential at interface
with the boundary conditions

8|_, =¥, (18)

It was shown in Ref. [2] that free surface problem (10) — (14) can be written in
the Hamiltonian form (1), with the Hamiltonian H defined in (15).
Fourier transform, :

¥y = 5‘% / exp(—ik - r)¥(r)dr, (19)

is the canonical transform which conserves the Hamiltonian structure and Eqs.
(1) take the following form:
o OH 0%y 6H

Et_ = J\I'_R, l at - —dn—k’ 7’k = n'—k’ ‘I’k = \I"“k' (20)

3 Weak nonlinearity

If typical slope of free surface is small, [Vy| < 1, the Hamiltonian H is can be
series expanded (see Eq. (2)) in powers of stepness | V| which gives [2, 3]:

1
Ho = 5 [ {40 + B}k,
Ap = ktanh(kh), By = g + ok?, k = |k|, (21)

1
H, = 4—7r- /Lg),kz‘l’kl‘l’kgﬂks‘s(kl + ko + ks)dkuﬂ(zdks (22)
1 @) o
1 = 57557 [ [ BB = 0 o) s K|
XTes Mea O(k1 + ka + k3 + ky)dkidkadksdky, (23)
where matrix elements are given by
LY\, = ki -ky — A1 Ay,
1
L ook = A4 (A1+3 +Azrs + A + A2+4)

_%(kf/b +K2A)), A=Ay, (24)
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The corresponding dynamical equations follow from (1), (6), (21), (22), (23) :

% —ontotn+ 1[(49)° - (VO)’] - (A)ARn(4%)]
~(aR)AT)y - 29 [n(Vn- V)|, (25)
%tﬂ = AU - V. [(VE)y] - A[nA¥] + A{n/i[nfi‘l’]}

1 4 1.
+§A[n2A\I’] + EA[ffA\I!], (26)
where A is the linear integral operator which corresponds to multiplication on
k tanh(kh) in Fourier space. For two dimensional flow, ¥(z,y) = ¥(z), n(z,y) =
n(z), this operator is given by

d
A=-5-R (27)

Rf(z) = PV / e 1) d’' (28)
sinh [(2' — z)m/(2h)]
where P.V. means Cauchy principal value of integral. In the limiting case of
infinitely deep water, h — 0o, operator A turns into operator k

a

lim A=k _ (29)

h—roo

_ which corresponds to multiplication on |k| in Fourier space while operator
R for two-dimentsional flow turns into the Hilbert transform:

B 1 T f(2)
lm R=H, Hf(z)=_PV. /_ I (30)
H can be also interpreted as a Fourier transform of —isign(k).

If one neglects gravity and surface tension, g = 0, 0 = 0, than Eqgs. (1), (2)
at leading order over small parameter |V7)| result in[5, 4, 6]

?;Z Ay, (31)
2 2w - (v9y). (32)

Remarkable feature of Eqs. (31),(32) is that the second Eq. (32) does
not depend on 7 thus one can first solve (32) and then find 7 from Eq. (31).
Substitution ©® = ¥ + iRY¥ into Eq. (32) results in the complex Hopf Eq. (4)
for two-dimensional flow [6] which is completely integrable.

Both Egs. (32) and (4) are ill-posed because they have short wavelength
instability which determines as follows. E.g. we can analyze Eq. (32). Take ¥
in the form

T =T+ (xI:le“‘*)"‘*"t +ee), (33)
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where ¥o(r,t) is a solution of Eq. (32), ¥, is the amplitude of small pertur-
bation, and c.c. means complex conjugation. Then in the limit [ko| — 0o ¥p
evolve very slow in space compare to e’®0'T+% and we get the dispersion relation
for small perturbations:

v = A, A¥, — ik - V¥ (34)

which describes instability for Re(v) = Ag, A¥q > 0. For general initial condi-
tion such instability region always exists. Instability growth rate, Re(v) grows
as |ko| increases.

4 Ill-posedness of the fourth-order Hamiltonian

Consider now a more general case of nonzero g and o and take into account all
terms in the Hamiltonian up to forth order, i.e. consider full Egs. (25). Similar
to previous section we linearize Eqs. (25) using ansatz

n=1n + (me"“°"+"‘ + c.c.),
O =T + (TretorH 4 cc), (35)
were 7o(r,t), ¥o(r,t) are solutions of (25), and get for |ko| = 00 :
v =Bt 2 (42 + 2 + (A, — B)(=1+ AoTo)rc]
x[—2g+ {3(Vm)® - 2}k20]) 1/2,
= —iko - V¥ + [Ar, + (k§ — A, )no] A¥o. (36)

Instability growth rate take more compact form for infinite depth fluid as
limh_,oo A.k =k:

(u2 +2ko [ — 29 + {3(V1o)? - 2}’620])1/2,

p=—iko - V¥ + kok¥o. (37)

83|

=k
1/-2+

For general initial condition with arbitrary depth h the instability region
Re(v) = Ay, A¥y > 0 always exists. We conclude that full fourth order Hamil-
tonian does not prevent short wavelength instability and Eqs. (25) are ill-posed.

Ii-posedness of Eqs. (20),(21) — (23) (or, equivalently, Eqs. (25)) makes
them difficult for numerical analysis. There a few ways to cope with that prob-
lem. One way is to introduce artificial damping for short wavelengths, i.e. to
replace Eqs. (20) by

om. _ GH 8%, 6H

ot

v +nE)m, —m = o + 72 (k) Py, (38)

8t 6T,




where functions - (k), y2(k) are zero for small and intermediate values of k but
they tend to —oo for k£ — o0o. Second way is to introduce finite viscosity of
the fluid. However in that case the Hamiltonian does not conserve and we can
not use the Hamiltonian formalism. In this Paper we use third way which is to
introduce new canonical transform of variables 7, ¥ to remove short wavelength
instability. Advantage of this methods is that, in contrast to first way, we do not
introduce any artificial damping, and, in contrast to second way, we preserve
the Hamiltonian formulation of free surface dynamics problem.

5 Canonical transform

Canonical transform from variables ¥, 7 to new variables R, £ is determined by
the generating function S :

1
S= /Rk")—kdk + & /A37Ik17?kaRk36(k1 + ko + k3)dk; dkodks

1
+4*‘-(2,r)2 / Vict s kes o Rlca Tica Ties ey 8(k1 + Kz + kg + kg )dk; dkodksdk,, (39)

éS 1
Uy = _5‘)7_1‘ =Ry + - /Alel‘m(z(f(kl + ko — k)dk;dk,
3
+4——(27r)2 /Vkl,kz,ks,—kRklnkaﬂksts(kl + ko + k3 — k)dk, dkodks, (40)

oS 1
b = Ry =Mt /Akﬂklnsz(kl + ko — k)dk,dk

1
+4(27,.)2 /V—k»k2:ks,k4nkz’7ksnk46(k2 + k3 + k4 — k)dkodkzdk,, (41)

where Vi, k; ks k, i8 the symmetric function of ks, ks, ky. This is the most gen-
eral form of canonical transform up to terms of fourth order. The only condition
which we use here is that S is chosen to be linear functional R to preserve the
quadratic dependence of the Hamiltonian on canonical momentum R.

7 can be found from Eq. (41) as the functional of £ by iterations (here
and below we take into account only corrections up to the fourth order in the
Hamiltonian): :

1 1
M= b o / Auti il +l )l + 5
x / [AkA1+2 - 2V—k,k1,k2,k3]£k1§k,§k35(k1 + ko + k3 ~ k)dk; dkadks, (42)

Eqgs. (40), (42) give:

1
Bo=FRyt o / A1 R 6,8k + ey — Kk dk +
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1
—_— / [— Ay Agys + 6V, ,kg,ks,—k] Ry, §xca€ks

8(2r)?
xd(k; + ko + ks — k)dk, dkadks, (43)

Using Eqs. (21), (22), (23), (40), (42) we get:

1
Ho=1 / { AR + Bulad }dk, ()

1 1
H, = 4—7';/ [— (k; - ko) Ry, Ry, — 6(A1B1 + A2B; + A3B3)€k1€kq]

x€xs0(k1 + ko + k3)dkidkadks, (45)
1
Hy = W / {(kl . kz)(A1+2 - A - A2) - ka2 - kgAl

1
+74142 [A14s + Azys + A1 + Azpa] + 3[A1 Vi kes ko K
+A2Vk1,k3,k4,kg]}Rk1 Ruabicsbic, (ks + ko + k3 + ky)dk; dkadksdk,

_1 1
+8(27r)2 /{ = U(kl . kZ)(k3 . k4) + ZA%+2B1+2 + A3B3A1+2

-2B; Vk; ka,kg,kq }£k1 é‘kz Eks€k4
x8(ky + ko + k3 + ky)dk;dkodkadks,  (46)

Canonical transform conserves the Hamiltonian structure so the dynamical
equations in new variables R, { are given by:

o¢ _0H OR_ _0H
8t R’ 8t o6 (47)

6 From complex to real Hopf equation
We chose the cubic term of the generation function S in such a way to remove

linear instability at leading order. Similar to Eqgs. (31),(32), we get from Egs.
(44), (45), (47) at leading order of small parameter |V | :

%}t—z = -—;—(VR)2. (49)

Thus instead of the complex Hopf Eq. (4) (or Eq. (32)) we got real Burgers Eq.
(49) for new canonical variable R. It is important that the real Burgers Eq. is
well-posed.

Additional advantage of (49) is that it can be integrated by the the method
of characteristic not only in two dimensions as Eq. (4) but for three dimensional
flow also.




7 TRemoval of instability from fourth order term

Next step is to remove instability from the fourth order terms in the Hamiltonian
(46) by proper choice of matrix element V. We can take Vi koksks in the
following form:

Vi ka ko ks = 01KF + 02 A1 (Azys + A2pa + Asya), (50)

where @y, ag are the real constants.
The dynamical equations, as follows from (44), (45), (46), (47), (50) are

R
8t

—%£VR VAR - %(1 —3a1)¢(AR)AR - (% +3as) (AR)A(¢AR)
302 ¢A[(AR)"] - 3V - [VE(VE: ve)| - %w (BE)

T2
1,.0 .04 1.a,,42 1—6a2
~5(ABE) AL - SAB(6A€") - —

” 1 .4 | P 1, .
- —Bt- %(VR)z + s6ABg + 7ABE + TEA(VR)”

EA(EABE) - € DB

A(E2AR) +

+3a,(AB) A7 - S ABE + P ABEAE), ()
%‘% =AR-V-[(VR){] + -}iv- [(VR)JUS’] - %V . A(&VR)
-3V (@AVR) + L= EaLLY:

. 1 (€AR)
+(5+302) A[£AEAR)] + 500 A[(A€) (AR)], G2

where B =g —oA.
Using ansatz

£=¢t+ (51 gikortvt 4 c.c.),
R=Ro+ (R1 gikoTvt 4 c.c.) , (53)

one can linearize Eqs. (51), (51) on a background of solution &(r,t), Ro(r,t) 2,
and get for |ko] =+ 00 '

_ El l 2 1/2
v= 2 + 2("2"'”3) ? (54)

w1 = —iko - VRo + 2 As6oko - VRo
—% [2(3a; — 1)k + (1 + 1202) A2, |€0ARo,
iz = iko - VRo + 5 Ao foko - Vo

+%[2(3a1 — 1)k2 + (1 + 3602) AZ, ] 0 ARo,

9




1
s = 5{2(Buo[44s,60 — 4+ 342, (40 — )& + 601 €3]
+6k30(V£0)?) + Aky (602 — 1) By, A€2 } {4k§50
(1 +1200) AL, £ + (4 + 601K3E3) Ay + (643,02 — KD) A3 ). (55)

To avoid instability it is necessary to have purely imaginary v. Necessary con-
dition for that is that the expression under square root, 2 + ps, in Eq. (54)
should have zero imaginary part. It follows form Eqs. (54) that ujs is always
real, and p3 is real provided

2(8a1 — 1)k + (1 + 36a2) A7, = 0. (56)
Second condition to have purely imaginary v is Re(p;) = 0, which gives the
second condition

2(3a1 — 1)k§ + (1 + 1202)AF = 0. (57)
It follows from Egs. (56), (57) that in the limit ky — oo (remember that Ay —
ko in that limit) the system (44), (45), (46), (47), (50) is well-posed provided

a; = 1/6, az = 0, (58)

which gives from (46), (50) the well-posed fourth-order Hamiltonian:

1 1
Hy = gy / {00 ko) (AL — 41— 2) - 5B s+ K341)

1 .
+ZA1A2 [A14s + Aoys + Arys + Asid] }
X Ry, R, €xcs i 0 (k1 + ko + k3 + ky)dk; dkodkadk,

! 1
+8(27r)2 /{ —o(k; - ko) (ks - ky) + ZAf+2Bl+2 + k3 B3A142
1 .

This Hamiltonian is well-posed for any g, o (including case g = o = 0).

To find dynamics of free surface, one can solve Eqs. for R, ¢ using Egs.
(47), (44), (45), (59). This is the main result of this Article. To recover physical
variables ¥, n from given R, £ one can use Eqs. (42), (43), (50), (58).

As follows from Eq. (58), new canonical variables £, R are uniquely deter-
mined from the condition of well-posedness of dynamical Eqgs. in new variables
up to the fourth order in the Hamiltonian. We refer to these variables as optimal
canonical variables. For some extent similar results were obtained by Dyachenko
and Shamin [18] for particular case of two-dimensional flow. We conjecture that
the optimal canonical variables exist and are unique in all orders of nonlinearity.

8 Special cases

There are a number of important special cases of optimal canonical variables.
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8.1 Deep water limit |
For h = oo Eqs. (44), (45), (59) take the form

Ho =3 [ {HRP + Bule? i, (60)

1 1
Hy = 47/ [~ Gt ko) B Ry = (k1 By + BBy o+ o B i)
X &1y 0(K1 + ko + k3 )dk;dkadks,  (61)
1

1
H, = W/{(kl ‘k2)(|k1 +k2| -k - kz) - 5(’6%*?2 + k%kl)

1
+gFuka ks + Kol + ko + k| + Jly + K] + [ka + k] }
X Ry, Rycp g bxc 0 (k1 + ko + k3 + ky)dk, dkodksdk,

1 1
/ {0 1a)(ks ko) + 3lks + ko Buss + s Bylls + ko

*3@n)?
1
-3B1 k’f}g.q Eicabics Eics (K1 + K + kg + kg)dky dkodkadky.  (62)

8.1.1 Zero gravity and capillarity g=0 =0

Ho = % f KRk,  (63)

1
Hy, = i / (ki - k2) Ry, Ry, éi,0 (k1 + ks + k3)dk; dkodks, (64)

1
Hy = —
27 8(2n)2

1
+gkuke[[ks + ko] + [k + | + ks + e + [kz + ko] }
kale,&‘sﬁ.“&(kl + ko + k3 + k4)dk1dk2dk3dk4. (65)

/ {0 Ko (s + o] = by = o) - %(ksz +R2ky)

8.1.2 Zero gravity, g = 0, and nonzero capillarity o # 0

1
Ho=1 / {HR? + okl }ak,  (66)

1 o
=k / [ 1 - X) B Ry = S8+ 15 + K)o
X €iq o(k; +ko + k3)dk; dkodks, (67)

1 1
[ {0 )ik +al = by~ ko) = 02k + o)

= 8202
1

+Zk1k2[|k1 + k3| + [k2 + k3| + [ky +ky| + ko +k4|]}

kalenfksflq&(kl +ko +k3+ k4)dk1dk2dk3dk4

H,
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o 1
+m§/{ ~ (k1 - ko) (k3 - ky) + Zlkl +ka|* + k3 |k + ko
1
~ 3} bbbk + ks + ks + ke)dladkodkadky.  (68)

8.1.3 Nonzero gravity, g # 0, and zero capillarity ¢ =0

1
Ho= [{HR +olaP ), Bi=g+oi, (o9

1 1
Hl = 17; / [ - (kl . k2)Rl(le2 - 'G‘(klg + k2g + k3g)£k1€k2]

% iy (k1 + ko + k3)dk; dkodks, (70)
1 1
H, = 8(2n)2 /{(k1 ko )(Jky + k2| — ky — k2) - -2—(k%k2 + k2ky)

1
+ghka (ks + | + [y + Jeo| + [k + s + ks + k] }
X Rie; Rscy §ics €ica (k1 + k2 + ki + kg)dk; dkodksdk,

1 1
+8(27r)2 /{ —o(ky - ko) (ks - k) + Zlkl +ka[2g + kaglk; + ko
1
—gykf}&tlé‘kzﬁks&q&(kl +kp +k3 +ky)dkidkodksdky.  (71)

8.2 Shallow water limit
Shallow water limit corresponds to kh — 0. In that limit A, — k2h. Egs.
(44), (45), (59) take the form
1
Ho=1 / {RhR? + Byl )k, (72)

1 h
= 1= [ [~ 0 )R R~ R82By + KB + BB, 1]

m
%€y d(k1 + ko + k3)dkidkadks,  (73)
h 1
H2 = W / {2(k1 . k2)2 bl ‘2'(ka2 + k%Al)

h2
+ kRS [l + sl + [k + Ks[? + [y + Koy + [z + k4|2]}

X Ry, R, €y €1 0(k1 + ko + ks + ky)dk; dkodksdk,

1 B2
+g(2,,.)2 /{ = o(k; - ko) (ks - ky) + Via +ky|*By1p

+hBalks + ko — 2547
x£k1€k2€ks §k4 6(k1 +ko + ks + k4)dk1 dkgdk3dk4. (74)

However conditions (56), (57) can not be simultaneously satisfied for shallow
water. Thus shallow water problem remains ill-posed even for optimal variables
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because of short wavelength instability coming from the fourth order term in the
Hamiltonian although instability from third-order term is removed by canonical
transform (40), (41). Actually there is no big surprise in that because we need
to choose carefully the order of taking the limits kh — 0 and koh — 00, where
k is the typical wavevector of surface motion and kg is a wavevector of short
scale perturbation. It means that we need first to solve dynamics of water with
finite depth h which is well-posed problem in optimal canonical variables, and
only after that we should take limit kh — 0.

9 Conclusion

In conclusion, we found optimal canonical variables for which the water wave
problem is well-posed in the approximation which keeps terms up to fourth
order in the Hamiltonian. The important question remain open if it is possible
to make water wave equations well-posed by proper choice of canonical transform
for higher-order corrections (fifth and higher order). We conjecture that such
optimal canonical variables exist and are unique in all orders of nonlinearity.
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